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Abstract—By means of'H NMR spectroscopy isomerism was demonstrated in N-alkyl substituted 5-chloro-
methyl-1,3-oxazolidines due to relativés-transorientation of substituents in 2 and 5 positions of theg.

The preferredconfiguration in 2,3-diaryl-5-chloromethyl-1,3-oxazolidinesis-(2R,5R), was proved by
guantum-chemical calculations.

Substituted 5-chloromethyl-1,3-oxazolidines areindicating that all the coupling constants are different.
polyfunctional compounds possessing versatile physid-he multiplets in1.82-3.79 ppmregion correspond
logical and biological activity and important technical to protons in4-position of the ring and to those of
properties [1, 2] Besides they attrachore and more the chloromethylgroup. Theresonances of protons
attention as object of theoretical studies on conformafrom phenyl substituents are observed in $d8-
tional analysis [3] and on relations between the struc7.50 ppm region, anthose of alkyl protons a0.92-
ture of compound and its reactivity [4, 5]. 3.77 ppm.

The comparison otH NMR spectra of the N-alkyl
and N-phenyl substituted 1,3-oxazolidines shows that
the phenyl substituent operates as electron-acceptor

We reported formerly [6] on the synthesis of
substituted 5-chloromethyl-1,3-oxazolidines/Il .

CIH,C
o\I/N—R
R
I-VII

as evidences the downfield shift of signdiesm the
protons in position®, 4, and5 by 1.3, 1.0:0.6, and
0.2 ppm respectively. This significant downfield shift
can be attributed tais-orientation of these protons
with respect to the N-phenyl substituergnd, con-

sequently, taransorientation of the N-phenyl group
with respect to the other substituents.

The prevailing conformation of 1,3-oxazolidine
rings turned out to be that where the unshaeést-
tron pairs ofoxygen and nitrogen are of axial orient-
ation [7~9]. Therefore the substituent at the nitrogen
occurs in pseudoequatorial positig0].

n all the oxazolidines studied the protons of
,Cl group appear as multiplets, amchproton
has a separate signal. The comparisontefNMR
spectra of compoundH, V with the spectra of the
corresponding 1,3-oxazolidines with no substituents
The present study was carried out in continuatiorin 5-position [11] evidenced the acceptproperties
of investigation on this class compounds performecbf the CH,CI group. In5-chloromethyl-1,3-oxazol-
with the use of'H NMR spectroscopy. As character- idines|l, V the signal from the proton i-position
istic signals in the'H NMR spectra (see table) are is displaced by0.15 ppmdownfield as compared to
regarded a singlet from proton i@ position (4.49-  the unsubstituted 1,3-oxazolidines, and the signal of
6.23 ppm) and resonance of the protonSmosition  the proton in 5-position is shifted downfield by
appearing in the regio3.96-4.62 ppm. Thesignal 0.5 ppm.Apparently in the5-position the negative
of proton in 5-position that is surrounded by four inductive effect of the chlorine atom igansferred
vicinal protons appears as an asymmetrical quintethrough bonds, and ththrough-space interaction of

I, R= Ph, R= Me;Il, R= Ph, R= Ph:lll,
R = 4-MeOGH,, R' = Me; IV, R = 4-MeOGH,,
R' = Et V, R= 4-MeOGH, R = Ph;VI, R =
4-CICH, R = Ph;VIl, R = 2,4-(MeO)C¢H,,
R' = Ph.

Compoundsl, IlI, 1V with alkyl substituents
attached to nitrogen were obtained as mixtures of tw%n_:
stereoisomers in 1: tatio, andN-phenyl substituted
1,3-oxazolidinesll, V -VII were isolated as single
diastereomers.
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Table 1. '"HNMR spectrap, ppm (, Hz) of substituted 5-chloromethyl-1,3-oxazolidines

Compd. C°H, s C'H, m CH, m R' R CH,CI, m
no. (1H) (1H) (2H)
|2 4.49, | 2.12-2.76 (2H) | 4.04-4.42 |7.16-7.44 m (5H) 2.06 s (3H) 3.48-3.70

4.62
I 5.85 | 3.24-3.44 (1H), | 4.30-4.62 |7.21-7.50 m (5H) 6.42 d (2H, H,%7.6),| 3.32-3.72
3.59-3.72 (1H) 6.72t(1H, H, 3J 7.6),
7.10 t (2H, H", 3] 7.6)
N2| 452, | 2.20-3.00 (2H) | 4.02-4.47 |7.00 d (2H, H, %1 8.4), [2.07 ©(3H) 3.60-3.72
4.65 7.50 d (2H, H', %) 8.4),

3.67 s (3H, CHO)
IV® | 4.56, | 1.82-2.66° (4H) | 3.96-4.46 [6.80 d (2H, H, %3 8.4), [0.92 t (3H, CH 217.2)| 3.46-3.62
4.66 7.28 d (2H, H, 3J 8.4),
3.68 s (3H, CHO)

Y 5.84 | 3.28-3.48 (1H),| 4.22-4.60 [6.76 d (2H, H, 3J 8.4),/6.38 d (2H, H,337.6),| 3.34-3.56

3.68-3.90 (1H) 7.24 d (2H, H', % 8.4), |6.72 t (1H, H, %37.6),
3.64 s (3H, CHO) 7.04 t (2H, H %J7.6)
VI | 5.85 | 3.22-3.48 (1H), | 4.24-4.54|6.20-7.40 m (4H) 6.20-7.40 m (5H) 3.48-3.69
3.69-3.90 (1H)
VIl | 6.23 | 3.16-3.44 (1H), | 4.29-4.60 |6.18-7.24 (3H), 6.18-7.24 m (5H) 3.55-3.79
3.70-4.00 (1H) 3.64 s (3H, CHO),

3.77 s (3H, CHO)

& Stereoisomers mixture in (GRCO.
® Proton signals of Chigroup from R substituent at nitrogen and protons 4a®m are overlapped.

the chloromethyl group with the unshared electrondiastereomers of compounds Il , IV arise under
pairs of oxygen and nitrogen results in the cor-conditions favoring isomerization they may be con-
responding redistribution of the electron density onsidered equally stable thermodynamicaBesides the
the second carboratom. isomers ratio observed in tHél NMR spectra is not

The X-ray diffraction study carried out on a single Eaffe](.:ted by the use of solvents with differemlarity

crystal of  5-chloromethyl-1,3-oxazolidin-2-one . _ . _
showed [12] that CKCI group was located in a The stability of_a molecqle is deflneq by combined
pseudoaxialposition. Thus it is presumable that in effect of electronic andteric factors.With N-alkyl-
compounds|-VIl the preferred orientation of the 1,3-oxazo_lld|nes _the st_e_rlc strain is small, thergfore
chloromethyl group igis with respect to the unshared the substituents in positior and 3 may be both in
electron pairs of the oxygen and nitrogatoms. This cis and trans mutual _orlentatlon_. Thus taklng' Into
position provides a possibility of their through-spaceaccount both electronic and steric factors the isomer-

interaction. ism of 2-aryl-3-alkyl-5-chloromethyl-1,3-oxazolidines
_ _ originates from the reciprocal orientation of substitu-
Compoundsl, Ill, IV with alkyl substituents at ents in positions2 and 5, and thecis- and trans

nitrogen are mixtures of two stereoisomers in 1:lgrientation of these substituents may be regarded as
ratio. Thepresence of two diastereomers in N-alkyl equally probable(Fig. 1).

substituted 5-chloromethyl-1,3-oxazolidines IS , 1
revealed by more complicatédd NMR spectra and _ According to“H NMR data N-phenyl-1,3-0xazo-

: . lidines Il, V -VII were separated as singlgomers.
by appearance of two singlefsom the proton in PV ; ,
ZYposﬁﬁon. g P The analysis of reaction mixtures byH NMR

spectroscopy revealed a presence in a small amount
It was reported [1315] that N-alkyl- and N-aryl- of the other diastereomer. Under the synthesia-
1,3-oxazolidines exist as a single or predominantlyditions the isomerization might occur via rirapen-
one isomer withcis-configuration of the substituents ing [17]; therefore we believe that the isolated
in positions2, 4, and5. Taking into account that the diastereomer is thermodynamically more stable.
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Presumably in the N-phenyl-1,3-oxazolidines
alongside the electronic factor operates also the steric R R
one. A steric strain arises at theis-orientation of S &
bulky substituents attached to positichand3. Con- CH.C \5 N\ Ar cn C\E A
sequently the stable configuration has the aryl sub- ? A/ ? A
stituents in the trans-orientation. Taking into “A

r
account electronic and steric factors tpeeferred cis-(2R, 5R) trans-(2R, 5R)
configuration of 2,3-diaryl-5-chloromethyl-1,3-0xa-  Fig. 1. configuration of 2-aryl-3R-5-chloromethyl-1,3-
zolidines should beis-(2R,5R) (Fig. 1). oxazolidines.

Further data on the steric structure d,3-di- 5 _ . _
phenyl-5-chloromethyl-1,3-oxazolidine were obtainedC ~CH,Cl bond(Fig. 3, a) it is possible to conclude
from the *H NMR spectrum registered at 300Hz. that the vicinal constantl; 5 4.611 Hzcorresponds to
At this resolution we were able to assign the multi-the coupling between protons~+and H, since the
plets corresponding to protons rposition of the H~ proton is locatedrans with respect to the more
ring and to those in the chloromethyl substituentS/eCtronegative atom, —oxygen. Consequently t]T_?
(Fig. 2). Eight lines in3.61-3.77 region by location ~downfield part of theAB-system belongs to the

and overall intensity correspond to the GH group.  Proton.

The protons of the chloromethyl group appear as The doublet of doublets & 3.96 ppmcorresponds
signals of a complicated AB-system &66 and to the H proton. It is coupled with the ¥ proton
3.73 ppm. Thegeminal coupling constant i§J;,  with the geminal constaritl,; 8.61 Hz and thevicinal
11.27 Hz, thevicinal constants ar€J;; 4.61 and constant);; 5.88 Hz. The H proton gives rise to a
%),, 6.68 Hz. triplet at & 3.49 ppm for thevicinal constant®J),,

Introduction into the ethane fragment of an electroo:01 H2 isclose in its value to the geminal constant

negative substituent, an oxygeatom, results in a (Fig. 2).

change in the vicinal couplingonstant, and there- The assignment of signals from*tand H protons
with the steric orientation of substituents in the frag-was done with accounting for the acceptor effect of
ment is significant. The maximaffect on the vicinal the phenyl substituent attached to th#rogen. The
coupling constant is observed at ttrans-position of  orientation of these protons is illustrated on Newman
the substituent with respect to one of the protons ofrojection(Fig. 3,b). The H proton is actually more
the neighbor CHCI group. The smaller coupling affected by the influence of the phengtoup bound
constant corresponds to this protfi8]. Considering to nitrogen. Therefore the correspondidgublet of
the above and also the Newman projection along th@oublets is located in a weakdield.

H’ H’
"’ N H’
J]Z le
H2 2
H., E3H4 y / W T,s
G W : o T
O. _N:Ph 3 N N 3
ey Iss ) 7 13 ’ 23 Jss
Ph H
1 1 1 \ } 1 1 1 1 1 1 1 1 1 1 1 1
4.6 4.5 4.0 39 38 3.7 3.6 35
AD ppm

Fig. 2. Part of the'H NMR spectrum of 2,3-diphenyl-5-chloromethyl-1,3-oxazolidine (30Biz).
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Fig. 3. Newman projections:d) along C-CH,CI bond;
(b) along C-C® bond.

We supported the conclusions on the configuration 4.
of 2,3-diphenyl-5-chloromethyl-1,3-oxazolidine by
calculation of the preferred conformations of the
molecule with the use of OUP Molecular Modelling
software [19]. The preferred conformationdasaluat-
ed by the minimal energy of a molecul&(,,) that
includes the bondenergies, bond angles, torsion
angles, and van deWaals interactions.

The calculation established that for 2,3-diphenyl-
5-chloromethyl-1,3-oxazolidine theis-configuration
is energetically morefeasible since the minimal
energy for this form(3.73 kJ motl) is notably less
than that for thetransisomer (9.63 kJ mot). The
bond angles HCH? and H'CH® equal respectively
to 109.2 and 110.7 deg, and thersional angles
HCCH?, H2CCH®, H*CCH? and HCCH? are 56.4,
62.9,58.6 and 2.2 deg. Fad2-(4-methoxyphenyl)-3- 7
(4-tolyl)-5-chloromethyl-1,3-oxazolidine theis-con-
figuration also is more preferable tharans (E,;, 8.
4.45 and 11.53 kJ mdl respectively).

6.

9.

EXPERIMENTAL 10
'H NMR spectra were registered on spectrometers
Tesla BS-497 and Bruker AM-300 (operating
frequency 100 and 300 MHz respectively) at-18
20°C.

The samples were prepared in standard NMR tubeg,
of 5 mm diameter, 10 vol%solutions in deutero-
chloroform or deuteroacetone, internal reference g
HMDS.

Substituted 5-chloromethyl-1,3-oxazolidinesvil  14.
were obtained from 1-chloro-2,3-epoxypropane and
Schiff bases in carbon tetrachloride in the presence ok5.
SnCl, at 5-10C along procedure described[@]. 16
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